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    Physics 17     Part N 

                Waves  

             Dr. Joseph F. Alward 

Video Lecture 1:   String Waves Intro 

Video Lecture 2:   Standing String Waves 

Video Lecture 3:   Intro to Sound Waves 

Video Lecture 4:   Doppler Effect for Sound 

Video Lecture 5:   Open-Closed Tube Resonances 

Video Lecture 6:   Open-Open Tube Resonances 

 

Waves on Strings 

 
 

Shake once:  An incident “pulse” (disturbance) 

is created that travels along the string; the pulse 

reflects back.  Reflected pulses overlap (not 

shown) incident pulses, and if the timing is just 

right, the disturbances are amplified, giving rise 

to what is called a “resonance.” 

 

An example of a resonance is shown below: 

 

 
Explanation and examples of resonances will be 

provided later. 

 

 

 

 

https://youtu.be/hpauPHWaxRQ
https://youtu.be/xILEDZ9QZzg
https://youtu.be/x_2Iu7T9tOs
https://youtu.be/NfV_Z0T3RSM
https://youtu.be/pLhqPprxAOo
https://youtu.be/3YMcInOjkjo
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Before discussing resonances, let’s look at certain string 

properties and behaviors that govern the creation and 

propagation of string waves. 

 

                    Pulse Speed 

 
 

L = Length of String              

m = Mass 

μ = Linear Mass Density 

   = m/L 

 

T = Tension  

v = Pulse Speed 

    = √(T/μ) 

 

Example:   

 

T = 4.9 N         

μ = 0.10 kg/m 

 

v = (4.9/0.10)1/2  

   = 7.0 m/s 
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                     Wave Frequency 

 

 
Repeated shakes (oscillations) of the string cause a 

“train” of pulses, called a “wave.” 

 

The frequency of a string wave is the number  

of pulses delivered to the string each second. 

 
The units of frequency are “hertz” (Hz). 

 

1.0 Hz = 1.0 s-1     (per second) 

 

 

          Wavelength 

 

The wavelength of a wave is the distance between 

consecutive maxima, or two consecutive minima. 
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                                     Nodes and Antinodes 

 

 

 

 

Nodes are places where there is zero 

displacement of the string particles.  A 

more precise name for this location is 

“displacement node.”   

 

“Antinodes” are places where there is 

maximum displacement.  Antinodes 

occur between nodes. 

 

 

 

           

 
For later use, let’s note here that the 

distance between consecutive nodes is 

/2. 

 

At ends of strings that are tied down, 

there is no possibility of displacement, 

so those ends of the string are nodes. 
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                      Amplitude 
 

The amplitude of a string wave is the 

absolute value of the string particles’ 

maximum displacement. 

 

The symbol for a wave’s amplitude is A, 

a positive number. 

 

 
 

          The Wave Equation 

                     f = v 

 

Example A:   

 

The speed of  waves 

on a string is 12.0 m/s.   

 

A t what frequency 

will the wavelength of 

a wave be 4.0 m? 

 

f = v/λ 

  = (12.0 m/s )/(4.0 m) 

  = 3.0 s-1  

   = 3.0 Hz 

 

 

Example B:   

 

T = 100 N          

m = 0.4 kg 

L = 1.6 m             

f = 10 Hz 

λ = ? 

 

µ =  0.4/1.6 

     =  0.25 kg/m 

 

v = (T/µ)1/2 

   = (100/0.25)1/2 

   = 20 m/s 

 

λ = v/f 

   = (20) /(10) 

    = 2 m 

 

 

As we’ve done so many times in the past, we’ve 

omitted the units in a few of the intermediate steps 

of Example B, but we did so with the full 

confidence that as long as we use SI units 

everywhere, the final answer will be in SI units. 
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         Resonances (Standing Waves) 
 

At certain frequencies a “resonance” occurs in which comparatively small amplitude 

vibrations* at the left end of the string below leads to comparatively large vibrations-- 

antinodes (A)--at certain points along the string, and zero vibrations at other points--nodes 

(N).   

 

Such resonances are often called “standing waves” because  certain points (nodes) on the 

string are not moving. 

 

Examples of standing wave (resonances) at the left, below. 

 

*The oscillations applied at the left end of the strings below have such small amplitude 

that the left ends are treated as if they were a nodes. 

 

The resonances below are in the shape of a series of “loops.” At the ends of each loop are nodes.  Recall 

that the distance between consecutive nodes in a wave is /2.  Thus, each loop has a width of half of a 

wave-length (λ/2).    

 

 

 

 
 

String particles in adjacent loops are oscillating 

“out of phase”:  If the string in one loop is 

moving upward, the string in adjacent loops is 

moving downward, and vice-versa. 

 

 

 

 

 

 

Click Here  to view video demonstration of standing waves. 

 

 

 

https://www.youtube.com/watch?v=-gr7KmTOrx0
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Example:   

 

The speed of pulses on a string of length 1.40 m is 2.60 m/s.   

 

What frequency of oscillation will create a standing wave 

with four antinodes (four loops), as shown below? 

 

 
 

Each of the four loops has a width of λ/2.  The sum of these 

widths equals the length of the string*  

 

4 (λ/2) = 1.40 

λ = 0.70 m 

 

f = v/λ 

  = 2.60/0.70 

  = 3.71 Hz 

 
  

*The “bulge”of the loops is exaggerated.  If such large bulges 

actually occurred, the sum of the lengths of the string 

encompassing each loop would be significantly longer that the 

straight-line string length specified.  For very small amplitudes, 

though, the difference is lengths is negligibly small, so the sum 

of the loop widths rules is accurate. 
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Example:   

 

Resonance on a 1.60-m string occurs with six antinodes 

when the string is oscillated at 6.0 Hz (6.0 s-1).  The tension 

in the string is 14.0 N.  What is the linear mass density of the 

string? 

 

 

  Solution: 

 

6(λ/2) = 1.60 

λ = 0.53 m 

 

v = λf 

   = (0.53 m) (6.0 s-1) 

   = 3.18 m/s 

 

    (T/µ)1/2 = v 

(14.0/µ)1/2 = 3.18 

              µ = 1.38 kg/m 
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                      Resonances on Hanging Ropes 

 
Resonances on strings can occur without 

both ends being tied down like the strings in 

our earlier examples.  

For example, if the top of a rope held 

vertically is oscillated at small amplitude at 

just the  right frequency, a resonance will 

occur.   

 

What makes this type of resonance different 

from the ones studied earlier is that there are 

not a whole number of complete loops, but 

a fractional number of loops:   1.5, 2.5, 3.5 

loops, and so-on. 

 

 

Example:  

 

A rope 0.90 meters long is hanging vertically; the bottom of the 

rope is free. An oscillator attached to the top of the rope is vibrating 

at a frequency of 4.0 Hz, which causes a resonance with four 

antinodes (3.5 loops).   

 

What is the speed of waves on this rope? 

 

      Solution: 

 

3.5 (λ/2) = 0.90 

           λ = 0.51 m                                       

            v = λf 

              = 0.51 (4.0) 

              = 2.1 m/s 
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                                       Sound Waves 

In this section, it will be worth remembering from our studies of air pressure in an 

earlier part of this course that atmospheric pressure at sea-level is 1010 millibar (mb). 

Click the link below to gain a sense of how sound waves are created and 

propagate.                                           
                                                           Video   

 

 

The figures below show the “compressions” and “rarefactions” of a sound wave.  

The amplitude of the sound wave is 5 millibar (mb).  A compression is a place 

where the air density and pressure is higher than normal, and a rarefaction is a 

place where the air pressure and density is lower. 

 

                                                   

 

 

H:  High Pressure  (1015 mb) 

L:  Low Pressure  (1005 mb) 

N:  Normal Pressure (1010 mb) 

 

 

 

 

 

https://www.youtube.com/watch?v=xOAsekn-NTQ
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Waves Interfering with Matter 

 

 

Waves whose wavelength are comparable to the 

length of objects over or through which the wave 

is traveling may shake the object apart. Longer 

wavelengths will not respond to the object’s 

presence, nor will the object be aware of the wave 

see it; the wave doesn’t interfere with the object, 

and vice-versa. 

 

Consider the example of a ship sailing on rough 

versus calm seas.   

 

In Figure 1, the wave rises and falls slowly.  The 

distance between consecutive wave crests (the 

“wavelength”) is many times the width of the ship:  

The ship is scarcely aware of the presence of the 

wave.  

 

However, in Figure 2 the ship’s length is 

comparable to wavelength. The ship abruptly rises 

and falls violently and  is at risk of breaking apart. 

 

The following general rule applies to objects that 

are candidates for disintegration by ultra-sound 

bombardment:  the optimum wavelength of sound 

is one that is comparable to the diameter of the 

object. 
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Example: 

 

“Lithotripsy” is a medical 

procedure in which ultrasound is 

used to break up kidney stones. 

 

What is the optimum ultrasound 

frequency for breaking up a 

kidney stone whose diameter is 

one centimeter  (0.01 m)? 

 

In kidney tissue, the speed of 

sound is about 1500 m/s.  

 

f = v/λ 

  = 1500/0.01 

  

  = 150,000 Hz 

  = 150 kilohertz 
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The Doppler Effect for Sound 
Doppler effect video. 

 

The listener hears a higher frequency as the car  

approaches.  As it is moving away, the listener  

hears a lower frequency.  

 

 

 

For use below, we will refer to the numerator 

above as the “speed term,” and the denominator 

as the “source term.” 

Doppler Effect Equation Rules: 

 

Approach-Larger Rule:  If either one is 

approaching the other one, choose the sign 

in the speed term that makes the ratio larger. 

 

Away-Smaller Rule:  On the other hand, if 

either one is moving away from the other, 

choose the sign in the speed term that makes 

the ratio smaller. 

 

 

 

 

 

 

 

 

 

 

https://www.youtube.com/watch?v=a3RfULw7aAY
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Example A: 

 

Suppose an observer is at rest, and the source 

is moving away from the observer at 30 m/s.  

If the siren’s frequency is 5,000 Hz, what 

does the observer hear? 

 

vo = 0 

 

Source is moving away, so we choose the 

sign in the source’s speed term that will make 

the ratio smaller:  We choose the positive 

sign. 

 

fo = 5000 (340 + 0) / (340 + 30) 

    = 4595 Hz 

 

 

Example B:   

 

The police car below is chasing a speeder.  

What frequency does the speeder hear? 

 
 

The speeder is the observer, and is moving 

away from the police car, so we choose the 

sign in the speeder’s speed term that makes 

the ratio smaller:  We subtract 50, not add. 

 

The police car is moving toward the speeder, 

so we choose the sign in the police car’s 

speed term that makes the ratio larger:  We 

subtract 30. 

 

 

fo = 4000 (340 - 50) / (340 - 30) 

    = 3742 Hz 
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Example:   

 

A fire truck emitting 2500 Hz and traveling east at 40 

m/s is racing toward an automobile traveling to the west.  

The automobile driver hears 3000 Hz.   

 

What is the automobile’s speed? 

 

The observer and the source are each traveling toward 

each other, so we choose the sign in each speed term that 

makes the ratio larger.   

 

3000 = 2500 (340 + vo) / (340 -  40) 

 

     vo = 20 m/s 

 

 

 

              Sound Wave Resonances  
 

Certain sound wave frequencies resonate in tubes.   

 

At open ends of pipes the air is free to oscillate with 

maximum amplitude:  these are the displacement 

antinodes. 

 

At the closed ends of pipes air cannot vibrate back and 

force through the end cap:  the air there is stationary.  

These are the locations of the resonating wave’s 

displacement nodes. 
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                       Open-Closed Tubes 

      

 
The trumpet is an example of an 

open-closed tube; when it is 

resonating,  there is a node at the 

mouthpiece. 

 

 
 
                                            Example:  

 

What are the four lowest frequencies of sound that will resonate in a trumpet (an open-

closed tube) 0.425 meter long? 

 

 

 
 

 

1(λ/4) = 0.425 

 

λ = 1.70 m 

 

f = 340/λ 

  =  100 Hz 

 

3(λ/4) = 0.425 

 

λ = (1.70/3) m 

 

f = 170/λ 

  =  300 Hz 

5(λ/4) = 0.425 

 

λ = (1.70/5) m 

 

f = 170/λ 

   =  500 Hz 

7(λ/4) = 0.85 

 

λ = (3.40/7) m 

 

f = 170/λ 

   =  700 Hz 

 

Note:  The resonant frequencies are odd-integer multiples of 100 Hz.  Other 

frequencies not shown above include 900, 1100, 1300, 1500, and 1700 Hz, and so on.   
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                                                             Open-Open Tubes 

 

The flute an example 

of an open-open 

instrument; when it 

resonates there is an 

antinode at both ends. 

 
 

 

                               Example:   

What are the four lowest frequencies of sound that will resonate a  

0.17-meter flute (open-open tube)? 

 

 

 

2(λ/4) = 0.17 

 

λ = 0.34 m 

 

f = 340/0.34 

  =  1000 Hz 

4(λ/4) = 0.17 

 

λ = 0.17 m 

 

f = 340/0.17 

  =  2000 Hz 

6(λ/4) = 0.17 

 

λ = (0.68/6) m 

   

f = 340/0.1133 

   =  3000 Hz 

8(λ/4) = 0.17 

 

λ = (0.68/8) m 

     

f = 340/0.085 

   =  4000 Hz 

 

 

Note:  The resonant frequencies are integer multiples of 200 Hz.  Other 

frequencies include 5000, 6000, 7000, 8000, and 9000 Hz, and so on.   
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      Sound Intensity 

 

 
 

I = P/A 

Units:  W/m2 

 

 

Example: 

 

Each second, 4.0 x 10-6 J of sound energy lands 

on an area A = 2.0 x 10-4 m2.   

 

What is the sound intensity at that location? 

 

I = P/A 

  = (4.0 x 10-6 W) /(2.0 x 10-4 m2) 

  = 2.0 x 10-2 W/m2 
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           Spherically-Symmetrical Sound Sources 
 

Sound sources that broadcast equal amounts of energy each second in all directions are 

called “spherically-symmetric” sound sources.   

If the power output of the source of sound is P, and the listener’s ear is a distance r 

away, located on the surface of a sphere radius r and whose surface area is 4πr2, the ear 

of the listener receives sound intensity I = P/4πr2. 

 

                                    I = P/4πr2 

 

 
 

Quadruple the distance:  intensity would be one-sixteenth as much.  If the ear is one-tenth as 

far from the source, the intensity would be 100 times as great. 

 

 

Example:   

 

A spherically-symmetric speaker has a power 

output of 200 watts.   

 

What is the intensity 4.0 meters away? 

 

4π(4.0)2 = 201.06 m2 

 

I = P/4πr2 

  = 200/201.06 

  = 0.99 W/m2 
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Example A:   

 

How far from a spherically-

symmetric 40-watt sound source 

would the sound intensity be one 

milli-watt per square meter? 

 

1.0 milliwatt = 1 x 10-3 W 

 

40 W/ (4πr2) = 1.0 x 10-3 W/m2  

                   r = 56.42 m 

Example B:   

 

At a certain distance from a 

spherically-symmetric sound source 

the intensity is I.   

 

What is the intensity 8, 7, 6, 5, 4 

times farther away?  Express your 

answer as a multiple of I. 

 

Intensity is proportional to the 

reciprocal of the distance squared: 

 

1/64 

1/49 

1/36 

1/25 

1/16 

 

 

 

 

The Threshold of Human Hearing 
 

The least sound intensity the average healthy 

human ear can detect is called “The Threshold 

of Human Hearing,” and is  
 
Io = 1.0 x 10-12 W/m2 

 

Below this intensity, the ear hears nothing, 

hence the subscript zero:  Io 
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Example:   

 

1.5 meters away from a whisper the sound 

intensity is 2.0 x 10-11 W/m2.   

 

(a)  Treating the whisperer as a spherically-

symmetric sound source, what is its output 

power P? 

 

4π(1.5 m) 2 = 28.27 m2 

   

2.0 x 10-11 = P / 28.27  

P = 5.65 x 10-10 W 

 

This is the approximate output sound 

power generated by a flapping butterfly 

wing. 

 

(b) How far from the whisperer would the 

whisper be inaudible, i.e., I = Io? 

 

                I = P/(4πr2) 

1.0 x 10-12 = 5.65 x 10-10/ (4πr2) 

               r  =  6.71 m 
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                   Decibel Level 

 
One of the two ways we quantify the amount of sound at a 

point--sound intensity--was discussed previously.  The 

second way of quantifying the amount of sound is to report 

the “decibel level.” 

 

The decibel level, also called “sound level,” is calculated as 

shown below. 

                            = 10 log (I/Io) 

 

 Intensity 

 (W/m2) 

Decibel               

Level (dB) 

Butterfly Wings Fluttering 1 x 10-12       0 

Normal Conversation 3.2 x 10-6     65 

Rock Concert Front Row      0.01    100 

Leaf Blower at Waist      0.32    115 

AR-15 Rifle Near Ear       10    130 

 

Decibel levels above about 110 dB will impair hearing and 

perhaps permanently damage the eardrum.  

 

                                         

 



23 

 

 

 

Example: 

 

What is the sound intensity at a point where the decibel level is 36 

dB? 

 
If you understand the concept of inverse functions and can apply it 

to the logarithm function, you would be able to obtain the answer to 

this question following the steps below.  You will get the same 

answer as other students will who use an equation solver on their 

calculator.  I recommend the solver method.   

 

36 = 10 log (I/Io) 

103.6= I/Io 

I = 3.98 x 10-9 W/m2  

 

 

 


